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A bid pricing strategy based upon opportunity costs is presented for the firm con-
fronted with the problem of competitively pricing a sequence of sealed tenders for
future undifferentiated but interrelated contract work. Each contract, if awarded,
will require the expending of predetermined amounts of several restricted resources
at a later time. A goal of the bidding strategy is to determine a price structure of the
winning bids which maximizes the total contribution over direct costs associated
with the time period of resource utilization. According to various levels of complex-
ity of data, several models of the problem are developed together with optimal bid
price rules. Each optimal rule involves scarce resource *‘cost’” charges for future
opportunities and competitive advantages according to the general bid rule form:
OPTIMAL BID PRICE = DIRECT COSTS + OPPORTUNITY COSTS + COM-
PETITIVE ADVANTAGE FEE.

Experiences are also given of an adaptive and conditional implementation of the
general bid rule for a major chemical manufacturer in a complex business area where
sales orders are determined by competitive bidding.

1. Introduction

In this paper we explore the problem confronting a firm that will be bidding se-
quentially via sealed tenders and against several competitors for contracts whose
fulfillment (or production) will occur during a later fixed time interval. Each contract,
if won, will require the use of predetermined amounts or restricted resources at the
time of actual production. The firm must determine a bidding strategy that will
optimize its total awarded contract value, less direct costs to be incurred, subject to
possibly flexible resource constraints. “Flexible’” means that the actual resource com-
mitment at the close of bidding is such that short-term alterations are possible. A
successful bidding strategy must also focus on the possibility of technological altera-
tions or improvements, as a consequence of the market moving toward an equilibrium
among competitors.

The notion of equilibrium among competitors is important to the bidding environ-
ment we study. We have addressed a complex multiple contract competitive bidding
process where (1) no one competitor is uniformly better than everyone else, (2) the
“efficiency” of a given competitor depends on the relationship between contracts he
receives including their many joint production possibilities. There may be no “lowest
cost” competitor in the collection of players. Rather, a natural kind of equilibrium
among all players is sought. Such an equilibrium among players depends on varying
degrees of individual player technological and managerial capabilities, which as far
as other competitors are concerned are essentially unknown to any given player.
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Various degrees of uncertainty and complexity exist for the data of the bidding
environment. Most data are probabilistic and even conditional on past data and past
decisions made. The complexities of a realistic environment have led us to organize
the paper according to various “levels of difficulty” for mathematical models of the
bidding process. By a “level of difficulty” we mean a deseription of complexity in the
sequential bidding process. The description is given in terms of knowledge about:
market price of a contract, order size, probability of winning, technological production
coefficients, conditional interdependencies of data for bidding, and which contracts
are to appear for bidding and when are they to appear.

We have chosen a simple hierarchy of four possible levels of difficulty. Mathemati-
cal models are constructed for each level according to degrees of complexity in the
data. Then, an optimal bid price rule is determined for each level of complexity. Each
of these rules translates verbally into the same bid price policy for all levels of diffi-
culty. The various levels are described as follows.

Level of Difficulty (a). Complete knowledge is available on all contracts, market
prices, estimated annual volume, and when bids are to be placed and for which con-
tracts. Level (a) is also called the “first level” and is described in §3. The first level
of difficulty also provides guidelines with which any bidding procedure may be evalu-
ated. Examples of ad hoe bidding procedures are glven in §3.1. In §§3.2 and 3.3 op-
timal bid rules are determined for level («) by using elementary linear programming
theory.

The next two levels are developed in Appendix 1. They give insight into an optimal
form of a bid price rule under more realistic conditions.

Level of Difficulty (B). Market price p; of contract j is a random variable while the
response function giving the probability of winning contract j at bid price b; isknown.
When the goal is to maximize expected markup, Theorems I and II of Appendix 1
give optimal bid price formulae. Theorem III gives information on the optimal bid
price when one seeks to maximize the probability of attaining a prespecified level of
absolute total markup.

Level of Difficulty (v). The market price is also random, but the probability of
winning is now conditional on the bid price b; and a general market price level. Tech-
nological production coefficients are also chance variables as well as unit direct costs.
Theorems IV and V of Appendix 1 derive optimal bid price rules under these assump-
tions.

Level of Difficulty (5). Here, much less is known about which contracts are to appear
and when they are to appear than in levels (a) through (v). The measurement of
the opportunity cost of scarce resources becomes more difficult. In §4 of the text this
level is discussed. Based on the concept of utilization of capacity and our findings at
previous levels, we suggest a bid price policy rule of the form encountered at all the
other levels. The theory and concept of the generalized restricted resource use ap-
proach to a “real world” bidding level of difficulty “(5)” is discussed in §2. §2 also
contains some management responses to the judgment required for implementation
of a mathematical model related to developments made in levels (a)—(y) as part
of a total bidding system.

From the viewpoint of a given bidder, little is assumed to be known about the other
bidders’ technology _and methods. of bidding. Therefore measurements of their be-
havior must be based on market reaction to submitted bid prices over a period of
time. Another characteristic of the process is that only a small fraction of the winning
prices of all the bids made by all competitors 'is known to any given competitor.
Each knows however (at any stage of bidding) the total dollar amount made avail-
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able to all competitors for bidding. Thus, he 18 able to estimate his own market pene-
tration at any stage of bidding.

The characteristics of this particular bidding environment touch upon concepts
of most realistic environments. For example: How do short-run operations relate to
longer term ones? When is it wise to listen to the market and initiate substantial
technological change? How can one assure that, at the end of the bidding period,
total overhead will be absorbed? Accountants and economists have done little on the
overhead absorption problem in sequential bidding processes and, in general, warn
against allocating overhead charges on a per unit basis. The corporate manager is
perplexed about these recommendations because he needs some method of incorpo-
rating the charges into his pricing mechanism so as not to distort an optimal pattern
of wins and yet give reasonable assurance of overhead coverage at the close of bidding.
The models derived in this paper give insight into these and other policy questions.

2. Profit Analyses and Competitive Bidding: Concept and Theory
by George R. Seiler

A major chemical manufacturer has undertaken extensive analyses to maximize
profits from producing units being run at full capacity. The objective is to obtain the
largest profit contribution possible for each unit of time associated with the full opera-
tion. Our approach is to identify the limiting resource or resources and those items of
cost which are truly variable with respect to time. We then work toward maximizing
the revenue contribution less these variable or direct costs per unit of time.

For example, in one of the operations today a given production unit is being used
to capacity. This unit may be used to produce a number of different products, and
these products have a wide range of characteristics as to composition, production
rate and sales price. In this type of machine operation, all costs other than raw mate-
rials, packaging supplies and freight out are essentially fixed over a moderate period
of time. Based on the concept that everything other than the materials for the prod-
uct are time charges, we can maximize the profit contribution over a period of time
by maximizing the absolute contribution over direct cost (called “C.0.D.”). Thus
if we know the net unit selling price and the net unit materials cost plus the number
of units that can be produced in a time period such as an hour, we can rank each of
our products in terms of dollar C.0.D. per machine hour. This ranking is independent
of overhead expenses, does not deal with sales margins, and is far removed from tradi-
tional accounting approaches. It is an analytical tool which operates to maximize the
net dollars received per unit of time. If, for example, we can move three times the
volume of a $1.00 C.0.D. item in the same time period as we can move one volume of
a $2.50 C.0.D. item, we will select the $1.00 item.

We first applied this tool in detail, and with success, to a multiple-machine produc-
tion process involving automotive products. We have recently made an extensive
study of the other operations on this basis, and have greatly modified our product
mix targets. We are also using this approach in simpler situations where only one
machine is our limiting resource. The ideal approach is to run those items in descend-
ing rank order until one runs out of capacity. In addition, we are putting our market-
ing emphasis on those items which yield the maximum C.0.D. per unit of time.

This same generalized approach can also be applied where there is present over-
capacity. In this case, production of items with positive C.0.D. is better than allow-
ing idle time on the equipment, again based on the concept of a fixed overhead. A
C.0.D. analysis can be made and incremental business programs can be put into
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effect to improve profitability. Concurrent programs are under way which review
the overhead time charges associated with our operations and analyze them in terms
of time rather than cost per unit. Any decrease in these charges over any time
period increases the profitability for that time period given the same direct costs and
sales revenue relationships.

There are varied levels of sophistication for the C.0.D. analysis. We have initiated
recent work in a simple manual form so that it is easily understood by all users. We
envision places, similar to multiple-machine processes, where more sophisticated
modeling techniques may be used to assist us in long-term marketing strategies,
scheduling operations, and decision making in complex situations. Standard cost
information now being developed will serve as a data bank for this type of analysis.

In the multiple-machine process instance mentioned above, our system also in-
cludes a sophisticated computerized mathematical model to aid in dealing with the
complex business of competitive bidding. Our bidding system consists of requests
for quotations from the customer, establishment of standard production costs (direct
costs and machine use rates), use of the mathematical model, interpretation of the
model results, the submission of bids, and the feedback of information from end re-
sults. The mathematical model is, therefore, only a portion of our total system al-
though it i8 one of the key elements. However, any evaluation of the system must
be of the system as a whole. Therefore, we will review the concept, the model and the
inputs and use of model results.

The concept, of course, is that of maximizing C.0.D. per unit of time as just out-
lined. The model was developed to determine best economic solutions within stipu-
lated limitations and assessing the economic costs of the restrictions and, therefore,
the value of altering them. Our model employs linear programming with dual evalu-
ators to determine pricing that will tend to maximize C.0.D. We use the dual evalu-
ators because they best express our realistic constraints: machine resources and es-
tablished market limits for volume and types of contracts.

We have two major dual evaluators which are used in preparing bids: The first
is machine resources and is expressed in terms of machine hour rates (determined
by opportunity cost calculations) and setup charges. The setup charges are a pre-
determined function based on an average of 12 runs of each part made per year (which
was based on customer release patterns); the setup is in hours and relates back to
machine capacities and the determined machine hour rates. The second dual evalua-
tor of major importance has been called the “Competitive Advanlage Fee” (“CAF”).
This is a representation of how well the part fits our remaining resources, or, in other
words, how good it is to make with what we have left. The limiting factor here is the
market reality rather than the production constraints. With this evaluator we attempt
to measure our expectation of our achievable share of the total market for the bidding
year.

The input to our model for producing any one part involves a number of items.
First are the standards in terms of direct labor, raw materials and efficiencies. Second
is the standard running times on each of our machines.

We began each year with a target C.0.D. based on a number of assumptions re-
garding our expectations for the full year. Throughout the bidding period we shift
the dual evaluators (set new limits) based on performance to date. This is done on a
periodic basis.

The bid pricing results generated by the model may be tempered based on market
intelligence and relative achievement on past bids. This, in turn, becomes a part of
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the input to our periodic shifting of dual evaluators. In addition, certain contingency
plans may be developed if we fall behind our target in the attainment of winning
bids. Here we often key to the Competitive Advantage Fee (“CAF") dual evaluator.

This generalized approach has proven successful in increasing profitability in a
complex business area where sales orders are based on competitive bidding,

3. Guidelines for Evaluating Bidding Procedures at All Levels of Difficutly

The purpose of this section is to suggest models and gvidelines within which most
bidding procedures must minimally be evaluated.

The underlying uncertainty at the beginning of and during the bidding period
involves the market price p; for part 7 and estimated annual volume k;. Normally
with bigger k/’s, our unit costs are lower because of relatively less time for setup vis-
2-vis running.

In §1, the levels of difficulty (a«)—(8) were introduced and defined by the amount
of the complexity in the data available. For each level of difficulty the following basic
questions must be resolved in evaluating any bidding procedure.

(a) Which products are “good parts” for the plant, in the sense of physical produc-
tion?

(b) What is an acceptable mix of products which load up our equipment to an
agreed-upon level?

(e) What measures are available for determining the marginal return of a part
to be bid upon at a given time with respect to future foregone opportunities associated
with its required resource usage?

(d) What measures are there for evaluating our equipment in the market place?
Are these measures powerful enough to initiate technological-production change?

(e) For any on-hand product, how can we measure its value as a contributor to
maximizing overall C.0.D.?

(f) How can a bidding procedure incorporate differing order sizes and their effect
on down time, i.e., setup time?

The purpose of these questions is to illustrate what should be required of a bidd-
ing procedure at each level of sophistication. In the next section we restrict attention
to the first level of difficulty (a) of the bidding environment. It is proposed here that
any ad hoc bidding procedure be evaluated as to how it performs at this level. His-
torically one might expect alternative bidding procedures to take forms such as the
following ones.

3.1 Ad Hoc Bidding Procedures

3.1.1 Use mark-up cut-off points to differentiate between good and bad parts.

3.1.2 Compute accounting costs on a per unit basis and include a profit percentage
perhaps based on an internal rate of return on investment. Include a penalty for small
volume parts.

3.1.3 Use industrial engineering in order to determine easy-to-make parts as well
as hard-to-make parts by referring to a list of attributes which inform us on the physi-
cal nature of the particular part. Thus, we can tell by our BASIC ATTRIBUTE LIST
precisely how to load up our machines allowing adequate time for setup, lunch, coffee-
breaks, ete. Thus, we will be assured that when it comes time to produce the parts
we have won, we can produce them. Consistent then with the physical approach,
we are justified in cutting prices across the board on those parts which fit in nicely
according to the BASIC ATTRIBUTE LIST.
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3.1.4 A statistician suggests running a least-squares regression of selling price
against (1) labor and (2) material and using the computed coeffiéients a and b in a
formula:

BID PRICE = a X LABOR + b X MATERIAL

3.2 Bidding Environment for First Level of Difficully (a)

In order to evaluate any bidding procedure, such as those above, the first step neces-
sarily is to assess its performance at the First Level of Difficulty.

3.2.1 First Level of Difficulty. The assumptions are the following. At the beginning
of the year (1) all products are known, i.e., the “blue-prints” are on hand, (2) each
market price p; is known for part j, (3) each estimated annual volume k; is known.
Such a situation could be realized in practice if all bids were let initially with suggested
prices (as when selling a house), with ties among competitors implying a split-up
of the estimated annual volume among them.

More importantly, any bidding procedure that is worthwhile should perform satis-
factorily in this environment with regard to questions such as (a) through (f), be-
cause of the following reasons.

(i) When market equilibrium or stability oceurs, it will not be difficult for a com-
petitor to estimate the market price of any given part as well as its volume. For ex-
ample, company personnel over the years have developed quite a talent for estimating
what a produet “will go for”.

(ii) A second reason for expecting worthwhile performance of any bidding pro-
cedure at the First Level of Difficulty is that it does not make sense mathematically
to have a valid procedure in general which is invalid for the mathematically simplest,
case.

3.3 A Linear Programming Model jor the First Level of Difficulty (o)

For convenience we shall use only two restricted resources, having ¢; and ¢, hours
available for the year. Let z; denote the amount of contract j desired which is to be
either 0 or the customer requested amount k;. Thus z; is to be determined at 0 or
k; by the model. Let a;; be the amount of time required on machine 1 to produce a
unit of contract j and similarly a,; is defined for contract j on machine 2. For con-
venience we assume 12 hours of setup are permissible for each contract which uses
machine 1 and 6 hours of setup are permissible for each contract that uses machine 2.

The direct cost d; for contract j consists of labor, material and packaging. The sym-
bol ¢; represents total available machine hours. We shall develop a simple linear pro-
gramming model which incorporates the k;’s and hours spent on setup for machines
1 and 2.

We also assume that a product is produced on one and only one of machines 1 and
2. From the data input viewpoint this simply means not both a;; and a.; are positive,
but at least one is.

We now consider the following linear program (I), which seeks to maximize total
C.0.D.

Program (I)
Compute
max i~ (p; — dj)x, forall z;,j=1,2,---,N, and S, S
subject to
(1) 2i-imzi+ S =a (nMachine #1),
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(2) Z?’-l @wiz;+ =0 (Machine #2),

(3) fm1 (12/k)x; — S =0 (Setup #1),
(4) Y1 (6/k)r; — 8: =0  (Setup #2),
(5) Zjék,‘, :tjgo, j=1’2,...,N.

The variables S; and S, denote setup time on machines 1 and 2 respectively. We
assume that there is at least one profitable contract which can be produced on ma-
chine #1 and at least one profitable contract which can be produced on machine #2.
It then follows that constraints (3) and (4) occur as equalities at an optimal solution,
see Appendix 2. Program (I) is an extension of the well-known machine loading
model. While it is linear, we show in Appendix 2 that the variable z; will be either 0
or k; for at least N-2 contracts in an optimal solution.

3.3.1 Optimal Bid Price Rules for Level (a). To each of the constraints in (1)~(5) is
associated a dual variable which appears in the dual linear program to (I). Because
of their interpretations, we shall call these variables “dual evaluators”. Let w; be the
dual evaluator associated with constraint ¢, ¢ = 1, 2, termed a “machine hour rate”.
Let m; be the dual evaluator associated with constraint 4, ¢ = 3, 4. m; the “setup
constraint” evaluator. Finally, let f;,7 = 1,2, --- , N, be the dual evaluator associ-
ated with the constraintsin (5). It shall be termed the “competitive advantage fee”,
denoted CAF.

An optimal set of dual evaluators determines an optimal solution to Program (I),
and vice versa. Thus, optimal dual evaluators determine which contracts are worth-
while with respect to Program (I). Consequently, we define an optimal bid price b;
associated with an optimal set of dual evaluators as follows.

bj = d; + way + f; + liml , if a machine #1 contract,

(Ra) i
= d; + wam; + f; + Gk_mz ) if a machine #2 contract.

¢]

Then according to linear programming duality theory,

b; = p; for j=1,2,---,N,
and
b; = p; for contracts j to be produced.

3.3.2 Interpretations and Extensions. The w; evaluators (¢ = 1, 2) are what Seiler
in §2 refers to as machine hour rates determined by opportunity cost calculations,
while the f; evaluators are called “CAF’s” where the limiting factor here is essentially
the market reality rather than production constraints. .

When the bid rule (Ra) is applied to the contracts j, j = 1, 2, --- , N, under the
first level of difficulty («), then a contract is awarded whenever b; = p; and lost
whenever b; > p;. It follows from the duality theory of linear programming that at
the conclusion of the bidding process, total C.0.D. of Program (I) is maximized.

Rule (Ra) has been applied in conditions that only approximate roughly the first
level of difficulty assumptions (e). In practice, these models contain more than 1500
contracts whichrmay be produced in alternative ways involving a dozen or more ma-
chines. Also, in practice, contingency plans and adjustments were made before sub-
mission of a final bid price. These modifications keyed on the CAF dual evaluators
and involved the judgment of management. Thus when needed, conditional and
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adaptive revisions of the formal bid price were made according to new informa-
tion.

‘We emphasize that these large variable linear programming models are to be inter-
preted and implemented in an adaptive manner. Therefore, beginning with an initial
set of evaluators, it is important that these should be periodically revised during the
bidding period to take advantage of the conditional status of the resource capacity
remaining unallocated and any possible price information. To accomplish this at
time ¢, we partition, last year’s data into two sets of contracts, J, and J — J., where
J: is representative of the contracts seen during the current bidding period up to
time ¢.' Letting ¢;' be the total amount of resource 7 allocated at time ¢ to the con-
tracts won up to that time, we can now solve

max ;; z = Z,’E:—.n (p; — dj)z;
subject to
ZiEJ—u a;x; < (¢ — c), tel,

0§Ij§kj, JGJ—JI,

where I is the index set for the resources and where, for simplicity, we have omitted
the setup coefficients from the constraints.

Analogous to the definitions above, w;’ is the optimal dual evaluator associated with
the resource constraint 7. The w;' are then the machine hour rates to be applied in
time period &.

When interpreting and implementing these models in the bidding environment,
additional constraints were developed and used as ways for handling certain risks.
For example, analogous to notions of “payback” and “horizon posture” (see [2]),
we developed market penetration and C.0.D. coverage constraints to be applied
at each bidding stage. These measures are used as filters for risks which probably
would not be acceptable to the firm in its bidding policies. Perhaps few firms would be
willing to lose essentially all bids for many time periods with the hope that the jackpot
will come near termination of the entire bidding season and such that the target C.0.D.
will be attained. Analogous remarks apply to the interpretation of “interim” posture
constraints for the firm. Associated with both of these constructs, since they are used
here in constraint form, economic dual evaluators provide useful measures for the
costs and implications of these devices, which are designed in part to assist in im-
plementing the linear programming (large scale) models as adaptive conditional
variants of an a priori LP model. This methodology appears to yield insight into the
dynamic nature of relative competitive values of restricted resources over time thereby
providing systems measures for production and capacity alterations.

4, Responses to Bidding Environments of Higher Difficulty (5)

We now discuss responses to problems encountered at the more realistic bidding
environment, level (8) described in §1. In doing so at this time we have skipped over
intermediate levels (8) and (). Their development, however, is given in Appendix 1,
and the optimal rules derived for these intermediate levels suggest that the general
bid rule form (R) given below is sensible for implementation at level (35).

(R) OPTIMAL BID PRICE = DIRECT COSTS + OPPORTUNITY COSTS
+ COMPETITIVE ADVANTAGE FEE

1 We may of course incorporate whatever scarce market price data that are available to the firm
for the current year into the LP model in an analogous fashion.
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where the opportunity costs are the restricted resource charges, and the competitive
advantage fee is the nonnegative additional charge if the firm is especially competitive
for a certain contract.

Because of the large number of contracts involved (over 1500) and their production
interdependencies, we use the linear programming model developed at the very first
level of difficulty as an approximation of the complex environment (5). Depending
on the amount of overall stability and validity of characteristics (), the first level
rule becomes dominant over others according to §3. Hence the associated bid price
rules of §3.3.1 are used with management judgment and market intelligence in an
adaptive and conditional manner as described in §2.

Thus, for level (8), we are suggesting bid pricing rules for situations where manage-
ments know much less about which contracts are to appear and when, but where the
current market is expected to react similarly to that of previous years. Although in
many cases one would want to maximize the expected marginal return from each
contract, we have sought a method here which determines or approximates the mar-
ginal return of a contract with respect to future foregone opportunities for restricted
resource usage.

In a restricted resource environment, the question of the capacity of resources over
which to allocate requires definition. By capacily we mean a balance or mix between
the physical output of the equipment and the manpower required to support that
output. This balance normally will be mutually agreed upon both by management
and labor (e.g., unions). In this and the following Appendices we shall assume that
all our bidding procedures and methodology are based on capacity operations. This
implies that certain physical operations or their combinations are performed in a
manner that may not necessarily be done for a less than capacity operation. We bid
at capacity because that is where the firm’s competitive advantage is most likely to
be. For example, at a capacity operation, the firm may be willing to double labor
costs in order to fully utilize restricted physical resources, such as machines, thereby
obtaining a high rate of competitive production.

We do not explicitly include in our models an evaluation of such alternatives in-
trinsic to the notion of capacity defined as a mix. Our thrust here is upon using well-
known computational methods and their attendant economic evaluators to explore
alternate bidding strategies. It is possible, however, to use these methods for a more
detailed study of the nature of “capacity” per se and for evaluation of various com-
binations of labor and physical productive equipment.

The firm does not know which contracts are to appear during the bidding period,
but feels that the market in total will be similar to that of the preceding year. Several
authors, including Mobley [16], have suggested that resources should a priori be
evaluated in proportion to their past contribution in a similar market. There appear
to be two objections to this. First, the method for determining the individual con-
tribution of a resource in an environment characterized by multiple and/or alterna-
tive resource usages per contract remains unanswered. Second, the firm’s performance
in the past year’s market may not have committed resources efficiently; therefore,
pricing resources on this basis would be equivalent to requesting a similar policy for
the upcoming period.

A proposal of 8. A. Tucker [25], [26] for evaluating resources might be to use the
relative costs of acquiring the resource capacities as proportional parts of the budgeted
contribution over direct/cost (C.0.D.) to be allocated. For example, one might cal-
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sulate a2 weighted average:

ZlEI w;

where w; is the cost of having obtained ¢; units of restricted resource 7. However, it is
difficult to incorporate such factors as technological obsolescence and inefficient usage
of resources in this method. In addition, it may bear no relationship to the value that
the market may be placing on resources. Littlechild [14], however, introduces methods
which explicitly contrast market evaluations of restricted resources with their acquisi-
tion costs. He shows not only that prices should be set to fully use capacity, but that
capacity should be increased until the opportunity costs it earns covers its purchase
cost (w; above) and production cost. Quoting [14], “Rather, price should be set to
just fully utilize capacity (subject to price not being below marginal production cost),
and capacily should be chosen so that, over the life of the assel, capacily cosls are just re-
couped.” We point out that with respect to capacity expansion, our comparisons of
alternatives of extra equipment (in practice) were made according to Littlechild’s
results. The terminology ‘“‘resource usage charge” which we have employed through-
out this paper is analogous to his notion of “opportunity costs that capacity earns.”
See also Kaplan-Thompson [9] for various rules for overhead allocation stemming from
mathematical programming models.

Our emphasis, however, is on models which yield market evaluations and alterna-
tive future evaluations while maintaining capacities initially as fixed and regarding
their associated costs as sunk. These models must and do possess parametric capabil-
ities available for decisions of additional eapacity commensurate with results of
Littlechild.

Another unexplored facet of this problem is how to determine the budgeted C.0.D.
within the time period of utilization. We shall not discuss this here except to state
that the relative resource pricing schemes we develop also provide a framework within
which parametric studies of the total C.0.D. can be made. In particular, the bid
pricing mechanism is designed to modulate resource evaluations in order to force
contact bid winnings to occur, enabling the resulting job mix to best utilize the total
capacity of the restricted resources.

One is faced with deciding how to measure the opportunity costs of resources.
Contracts must first bid against future contracts the firm may face for the use of
resources while simultaneously competing in the outside market. Our models (includ-
ing the dynamic extensions as given in Appendix 1) developed in the previous sections
have led to a bid price rule of the general form (R) above.

In the following appendix we derive various forms of the rule (R) determined
mathematically for the levels of difficulty (8) and (v).

Appendix 1
On Sequential Probabilistic Multi-Contract Bid Pricing Models

The purpose of this appendix and some of the developments of our earlier manu-
seript [11] is to develop various bidding rules under various mathematical assump-
tions on the complexity of the bidding process. We first introduce a probability dis-
tribution on the minimum winning bid price and seek to (1) maximize expected
markup, and later (2) to maximize the probability of attaining a given aspiration
level. We then introduce a probability distribution on the restricted resource itself,
thereby making 1t a random variable.

C.0.D.
) s for each resource 7,
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We do not mean to imply that these extensions have been implemented by verify-
ing the assumptions of any one of them in practice. Rather, the mathematical form
of the optimal bid price rules of cach has reinforced the use of the form derived at
the “first level of difficulty”, namely the general bid rule (R) given in the text:

OPTIMAL BID PRICE = DIRECT COSTS + OPPORTUNITY COSTS
-+ COMPETITIVE ADVANTAGE FEE.

This appendix details the mathematical form of this rule for the levels of difficulty
(B8) and (¥). The levels () and (§) have been discussed in the text.

1. The Market Price as a Random Variable: Level of Difficulty (3)

We shall now assume that we know a;;, d;forallj € J aswell as¢; for allz € I.
However we do not know the price, p;, at which the contract j can be won in the mar-
ket place. Instead we assume the existence of a known function, g;(b;), for our bid
price, b;, such that

¢i(b;) = probability of winning contract j with bid price b;

= [ arp) =1 - Fib)
pj=bj

where F;(p;) is the cumulative distribution function of the minimum bid price, p;,
of all other competitors. The assumption of such a function is common in the bidding
literature. Several such random variables and the associated distributions have
been used to introduce market uncertainty into bidding models. See Stark and Mayer
[24] and Stark [23], and also the work of Christenson, Edelman, Friedman, Dean,
Hanssman and Rivett, Howard, Ortega-Reichert, Robinson, Rothkopf and Sim-
monds all referenced in Stark [23].

Our purpose is not to propose a specific distribution for F;(p;) but to suggest that
the assumption of the existence of such does embed some measure of the uncertainty
of the market into the model. Actually there is still active discussion of the distributions
F (p;); see, for example, Stark [22]. Obviously, the competitors do not act aceording to
F;(p;); however, this function embodies what we observe the competitive behavior
to be as a function of our submitted bid prices.

The use of such a function has been criticized because it does not account for the
reaction that a competitor may have to our bid price strategy during the bidding
period. Yet, as stated previously, the competitors in our sequential problem know
only that they will win or lose a contract—no more. Thus, although it may be theo-
retically appealing to speak of a competitor reaction, if one cannot observe or intuit a
specific competitor’s state of nature, one can hardly consider his reaction strategies
that are dependent upon such a state. For both this reason and the indications that
tacit agreements concerning markup percentages do exist within many market places,
we maintain that F;(p;) is a reasonable characterization of the behavior of the com-
petition in an imperfect, but essentially stable market. It is possible to develop op-
timal bid price rules when an adaptive version for the F;(p;) is used. Some of these
extensions were set forth in [11].

2. The Bidding Process Under Price Uncertainty—Maximizing Expected
Markup (8)

Given g;(b;), which may reflect uncertainty concerning both the cost of fulfilling
the contract and level of market prices, our bidding process is a series of Bernoulli
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trials where
Pr(winning contract j | b;) = g;j(b;),  Pr(losing contract j|b;) = 1 — g;(b;).

However, when a restricted resource has been allocated to contracts won to the extent
that insufficient capacity remains for a future contract, then that contract cannot be
bid upon (ignoring outside contracting, overtime, ete.).

Let us define the following:

Ji = {7 | contract j has been won and contract k is to be bid upon next},
¢ = quantity of resource 7 unallocated after the first (k — 1) bids
= ¢ — Z:‘eu a;j, t € I, where I indexes available resources,
Cr = {ca, © € I}, a vector of unallocated resources after (k — 1) bids,
a: = {ai, ¢ € I}, a vector of resource requirements for the kth bid,
Ci — ax = {(cax — au),i € I}.

Now assuming that the objective for the firm is to maximize the total contribution
over cost (C.0.D.) during the bidding period, we can describe the bidding process by
the following functional equations:

'}

¥(C:) = maximum expected C.0.D. for the contracts k, --- , n given the unallo-
cated resource capacity Cx

maxy, {ge(be) [be — di + ¥ua(Ce — ar)] + [1 ~ ge(be) 1¥e2(Ci))

if Ci—ar20

= 0 4+ ¢441(C:) otherwise, fork=1,---,n— 1.

Now for k = n we define

Y. (Cn) = Maxy, {ga(ba)[bn — du]}, if Ca—a. =0,
= 0. otherwise.

Following the definitions above, observe that ¥;(C}) is the maximum expected markup
from the bidding process, given the availability of ¢; units of the restricted resource 7.
Thus if “OH” is the total indirect overhead associated with the time period of pro-
duction of the awarded contracts, then the maximum expected profit is [#,(C:) — OH].

We need the following definitions:

(A) B: = inf {b: | ga(be) = 0},

(B) M(Ch) = ¥ a(Ch) — ¥ a(Ci — ai).
The price B is the bid price for contract & above which it cannot be won. In (B),
M(Ci) 2 0, and is a measure of the value of the resources a; if contract k is lost. We
shall show that A\:(C:) may be viewed as a resource usage charge to contract & in
forming its bid price. We need, however, some regularity conditions on the functions
g1(b:) and so we review one of these called unimodality.

A differentiable function h(f) for a £ ¢t £ b will be termed unimodal whenever
K(t*) = 0 for some t*,a < t* < b, is equivalent to h(t*) = max {k(f) [a < ¢ < b}.

We now derive Theorem I which gives optimal bid rules under the “level of diffi-
culty” defined in this section, which corresponds to (8) described in the text.

TaeOREM 1. Assume the following four properties hold.
1. gu(bi) 78 a continuously differentiable function, 0 < b. < 8,
gi(be) = 0 for by 2 B where B: 18 defined in (A) above, and
gi{bs) > 0for0 S b < Bs.
2. For any fized z, 0 = z < B, the function gi(b;)(bx — z) is unimodal for z <
b < B:.
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3. di + M(Ch) < B, where M(Cy) s defined in (B) above, and d, (direct cost) > 0.
4, Ck - Qi % 0.
Then an optimal bid price be* erists and satisfies
Y= de 4 M(C) — gelbe®) /g (0*)
where g'w(b.*) denotes the derivative of g. at b~
Proor. By definition we have that

Yi(Ch) = ¥ra(Ci) + maxs, {gu(be) (b — de — M(CL)]}.
Since ¥i12(C.) is independent of bs it suffices to investigate

he(be) = gu(bi)[be — di — M(C)},
which is continuously differentiable for 0 £ b < 8. By inspection we see:

(8) (b)) =0  for be 2 B,

(b) he(by) =0 for 0 = b £ dx + M(Ci), and

(e) h(be) >0 for di + M(Ci) < bi < B,
where (c) follows from assumption 1 and the form of hi(b:). Therefore h: assumes a
maximum at b.*, di + M(Cx) < be* < Bi . But hy(be) is unimodal for di + M(Ci) <
be £ B¢ by assumption 2, and therefore its derivative at b.* is zero, i.e.,

0 = Ki(b") = (&) + ¢e(b*) (b® — de — M(Ch)).
However since Jk(b,, ) > 0, it follows that ¢.(b:*) 5= 0 and therefore
b = die + M(C) — ge(be®) /g'u(bs*)

completing the proof of Theorem 1.

Remark. The unimodality assumption is weaker than earlier concavity and mono-
tonicity assumptions we used for Theorem I, as pointed out to us by a referce. We
use the previous assumptions in Theorem II.

The following Corollary gives the optimal bid price when di + M(Cy) 2 B .

CoROLLARY. Given assumptwns 1,2, and 4 of Theorem 1 and 3" dk + M(Ci) Z B:..
Then an optimal bid price b,* 18 given by b.* = B, , in particular, b.* = di + M(Cy).

Proor. Properties (a) and (b) in the proof of Theorem I are still valid in this case.
Hence he(be) < 0 for 0 < b < di + M(C), and by < ;. Since

Br = di + M(Cy),

it follows that any b.* = g, is optimal. Thus, a negatlve markup is avoided. Q.E.D.

Thus we see that our optlmal bidding strategy is essentially to charge contract j
with resource usage charge A;(C;), the opportumty cost of the a; resource units given
current capacity of C;. Then, if them is a positive probability still associated with
winning the contract, one calculates b;* according to Theorem I. Letting

= —(gi(d;") /4" i(b;*)),
the conclusion of Theorem I becomes:
(RB) b* = d; + M(C)) + ;.

This rule is of the same form developed for the first level of difficulty («) in the
text and may be ecompared with rule (R) given in §4 in verbal form.
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Here however, the resource usage charge \:(C}) is not in general a linear function of
a; . Moreover, these charges are conditional upon the resource eapacities C; remaining
unallocated after the first £ — 1 bids.

We discuss now the situation when the (k — 1)th optimal bid price is higher than
the going market price. In practice it is sometimes feasible to bid at a price lower than
the optimal bid price but above the direct cost of the contract. At least a contribu-
tion to overhead is obtained in this way, but at the expense of using up resources
which could have been better employed. Acceptance of such ‘a contract would be
especially feasible if there were possibilities of recovering C.0.D. in the future.

When the (5 — 1)th contract is bid at its optimal bid price and loses, then C; =
C._, . Attention now i8 centered on how to bid for contract & which uses reS0Urces G «
We assume contract & is identical to k¥ — 1 and that the probability of winning is the
same for each.

Thus,

(C) ai1 = ar, drr = di, gea(b) = gu(b) for all b.

We assume also that the resource usage charge has not increased because of the loss
of contract k — 1, i.e.,

(D) M(Cis) = Ma1(Cin).

Under the above conditions we now relate the kth bid price to the (kK — 1)th bid
price as follows.

TuEeORENM 1. Assume that the following properties hold.

1. g:(b:) 78 a continuously differentiable concave stricily decreasing function for 0 <
be £ B, and g(be) = 0 for be = B, while gi(bs) Z 0 for 0 S b < B

2.d;+ M(Cj) <B5,i=k—1,F

3. C,-—a;§0,j=k—l,k.

4. (C) and (D) above.
Then if t}w ophmal bid biy for contract k — 1 loses, the optimal bid b.* for contract k
saligfies bt < by,

Proor. Defining h:(b:) as in the proof of Theorem I, it follows from 1 above that
hi is a concave function for di + M\(Ci) = bi < B since

B'u(be) = 2g'u(be) + ¢"s(be) (0 — de — M(Ce)) < 0

due to the fact that gi.(b:) is concave decreasing. Thus, h:(b:) is unimodal in this
situation.

Therefore, Theorem I applies to yield optunal bld pnce rules:

(11.1) bb—l = diy + Ma(Cir) — gk—l(bl—l)/g b—l(bb-x),

(I12) b* = dicy + M(Ce1) — gea(be®) /gea(bs®),
using (D) and Ci = C: stemming from the loss of bid ¥ — 1.

Hence using assumption (D),

(11.3) bg - bb-l = M(Ce) —~ M1(Cia) + (A — Ary) S A — Aga, where
Ay = —gi(b:*) /g 1(b:*). However, upon checkmg derivatives it follows that A; is a
decreasing function of by . Therefore, if b* > bhl then Ay — Ar; < 0 and a con-
tradiction of (11.3) is obtained. Hence b:* < by, QE.D.

3. The Bidding Process Under Price Uncertainty—Maximizing the Probability
of Attaining a Given Aspiration Level

‘We continue to investigate level of difficulty (8) as in the previous section but now
rather than maximizing the total expected markup, the goal is to maximize the prob-
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ability of gaining a total markup of, say z. Thus we are adopting a satisficing approach
where z is a target value, e.g., budgeted contribution over direct (C.0.D.).?
Letting
2=z — 2jen (bj— d))
= total contribution still to be attained after the first (k — 1) bids,
we can again deseribe our bidding process by a set of functional equations:

¥(Cr, z:) = maximum probability that z will be attained by the end of the bidding
period, given the remaining resource capacity of C: and target of 2:
remaining after the first (K — 1) bids,

= Maxy, ge(be) [(Fes1(Ce — ar, 2e — b + di)]
+ 1 — g(b)¥esa(Cr,z), if Co—ae 20, 2:>0,
=0+ ¥ (Ci, 2), if Co—ar20, >0,
=1, if z2=0,for E=1,---,n—1.

For k = n, we define

‘I’,.(Cn N Zn) = maxs, _([n(b,.) if Cn — Gn ;. 0, Zn > O, 2n — bn + dn é 0,

=0 if Ch—a20, z,>0,
orif Cy—a,20, 2. —by+d, >0,
=1 if Co20, z,50.

Thus ¥,(C,, 2) is the maximum Pr{total markup = z} given the availability of ¢;
units of resource Z. Also letting

A (Ci, 25, b;) = ¥i(Ci, 2;) — ¥in(C; — aj,2; — b; + dj),
we have the following theorem.

TueoreM 1II. Assume the following properties hold.
1. Assumption 1 of Theorem II.
2. M(Cr,2,8:) <O.
3. Cg - Qg g 0.
Then an optimal bid price by* exists, de < b* < fi. When the

Wis(Cr — ar, 2 — bi, di)

_ (Ciyze, i) [— yk(b:)]
by Be g" g(bk‘) :
Proor. ‘I’g(Cg, Zk) = \I’H.l(ck, Zg) + H(bg), where

H(b:) = maxs, { —ge(be)M(Ch, 2e, be)).

W,(Cs, 2:) can be shown to be a concave, nonincreasing function of z; by induction,
and hence is a continuous function of zx . Thus, ¥;41(Ci — ax, 2 — by + di) is con-
tinuous in by , and hence 80 i8 M(Ch , z: , b:). Therefore H(b:) assumes a maximum at
b:*, d = b.* = B, . However since M(Ci, z¢, B:) < 0, it follows that H(b) > 0

i8 differentiable at by, then

Xg(Cg, 2k, bk*)

2 See Charnes-Stredry [6] for a further discussion of aspiration criteria.
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in a neighborhood of §:. Furthermore since
M(Cr,2e,di) = Ve d(Cey2zi) — Yeqa(Ce — ar,2) 0
it follows that H(d:) < 0. Hence di < b.* < 8. When ¥i.(Cy ~ ax, 2 — be, di)

is differentiable at b.*, it follows that

52— [ — gu(be)N(Cry2e, b)]e = 0
k
that is,

N Ce, 2, be)

dbe b [_ggzlff:; )] )

4. Price Uncertainty—Market Reaction Level of Difficulty (v)

It is intuitively appealing to be able to analytically specify through g;(b;) the
market reactions that could be expected as a result of various bidding strategies.
Since we are unaware of any specific competitor's state of nature, we must assume a
market reaction dependent upon the only information that we possess—our own
relative standing vis-a-vis (a) bids won, (b) total dollars won, (¢) market penetra-
tion and other attributes.

Thus we can assume the existence of:

gi(b;| &;) = Priwinning contract j | bid price b; , market price level &},
where & ; is a function of our policies and/or performance for the first j — 1 contracts.
Possible measures of such a function may include:

(a) the fraction of the total contract value of the j — 1 contracts won,

(b) the fraction of the number of contracts won,

(c) the average bid markup,

(d) the deviation from the market penetration achieved in past bidding periods.

The difference between g;(b | ¢;) and an adaptive estimation process of g;(b;) of
§2 (as, for example, in [11], §8) may be surmised if we assume that we win the first,
say, | bids. As a reasonable market reaction, we would expect gis1(biya | $41) to
exhibit the property that the market bid prices are lower, forcing a lower b4y to
attain a probability p of winning contract ! 4 1 than if we had lost the first I bids.
Now an adaptive estimation process for the g;(b;) (see [11]) might indicate that
the market is bidding high and thus permit us to raise b;4; to attain probability » of
winning relative to such a b;4; had we lost the first ! bids. Thus although the analysis
of the market price level relative to our bid prices is identical in both cases, the adap-
tive model assumes it will remain as is and moves to take advantage of this while the
reaction model assumes it cannot remain so and moves in anticipation of its expected
correction.

We note that a strategy of placing otherwise noncompetitive bids for certain con-
tracts can encourage higher market prices that may lead to a greater overall expected
return for the entire bidding period. We believe that under the conditions of market
reactions it should be possible to describe the bidding process by a set of functional
equations where ¢; becomes an additional state variable, analogous to the earlier
dynamic programming models of §2.

5. Resource Allocation Uncertainty: Level of Difficulty (y)

In the previous sections we have assumed that the amount of resource 7 required
to fulfill contract j at a later time period was a known constant, a;;. If instead we

M(Ch, 2k, bk‘) =
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assume that a;; is a random variable, then, in general, we would expect the direct
costs, d;, to be probabilistic. Also, since the estimate of the probability of winning
contract j at bid price b; is usually based upon d;, it is apparent that a characteriza-
tion through b; alone is insufficient. However, the more important question is how to
interpret the restricted resource capacities, given random future allocations.

For the purpose of disposing of the first two complications, we shall assume that
d; is a random variable with c.d.f. F;(d;) where our g;(-) function now appears as

¢i(bi| d;) = Pr{winning contract j|bid price b;, direct costs dj.

Our sequential process does not reveal any information about the distribution of the
a;;’s since the resource allocation will be made in the future. Of course we do learn
which contracts are won, thereby defining J&, which updates our knowledge of the
distribution of Y se, a;.

In order to express our constraints on the restricted resources we must use the con-
cepts of probabilistic constraints. One technique for handling constraints involving
random variables is chance-constrained programming’ in which one replaces

Yiene; = Ci, i€l

Pr{icsai; < Ci|Ja} 2 &, Vi€l
where a; is a given constant, 0 £ a; = 1,V € I.

Theorem IV and Lemma 2 which follow are used to compute the form of an optimal
bid price rule, which is related to those developed earlier at the first level of dlﬂiculty,
and in the more complicated situation of §2 of this appendix.

THeoreM IV. Given 1. j; = min d; such that F(d;) = 1

2. a;’s independent random variables ~N (ui; , 037), pij = 0

.2 Y

4. Z(y) defined as min u such that Prit < u} = y where t ~ N(0, 1) then

Pr{2 jes, 0 £ ci|Joa} 2 @

with

if and only if
¢ — Dljes b — i 2 Z @)V (Xsen obi + o)™, au(bel ) =0
k=1---,n
PROOF. Pr{ D jes. 0ij S ¢:) 2 i &
TR 2 e
Ci > Z7(a) (Xiesn i) + Licon wise
But since of; and g;; are both nonnegative terms for all j, then any partial sum of

these terms must satisfy the inequality, unless g;(b;| 7;) = 0, in which case the con-
tract j will not be won and thus, not enter into the sum. Q.E.D.

LEeyMa 1. Given
1. assumption 1, Theorem IV
2. assumption 3, Theorem IV

3 Introduced by Charnes-Cooper-Symonds [5).
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3. ais’s ~ N(uij, 03j) with covariance matrix (o3i), pi; = O then
Pr( X jes. i < ci| Ja} 2 a; if

6 = Djenmis — pa 2 Z(00) Djen 0% + ol + Diinesn.imt 03y + Dies ok,
or
.(/k(bkljk)=0: k=l)“':"'
Proor. This follows directly from both Theorem V and the definition of the variance
of Z j€I Aij »
Thus, for the case where the a;s are independent random variables ~N (ui;, 0%5)
we can amend our notational definition in order that:

Ce=lci— Ljenwis, Vi€, ar={pa,Vi€l,
¢ = | 2jesncis, Vi€ 1), andal = ok, Vi € I}.

Now due to the deterministic equivalents shown in Theorem V, we can again describe
our bidding process by a set of functional equations:

i (Cr0e) = Maxz, [L” {oe(beldi)[be — de + Yera(Cr — ar. ¢ + trf):l +

(1 — ge(beldi) Yunr (Ce 9 }dF(d))l i Ci — a2 Z7 (i) V{@e + o)
= 0 + Yu41 (Cr. ¢:) otherwise

fork=1,---,n—1.
Defining ¥, 41(-, -) = 0 allows us to include the case k = n above.
THEOREM V. Assume that the following properties hold.

1. Assumption 1 of Theorem 1.

2. 7(C5, ¢5) < Bi,

.a;2Y, i€l

4. C; — a; = ZNa)(¢; + o), read component-wise, « = (a)
then the optimal bid price, b;*, is such that

e dig';(;* | d;)dF(db)
AU

= (@) /3:(0:*)) = b;* ~ \(C5)—
where

R PACIE R ICPR

5 ) = [o5 (1 d)ar@;),
g; (b;| &;) = ay;(b; | d;)/ ab;, and
M(Cis) = ¥i11(Ciy #5) — ¥51(C; — 65, 5 + 07 .
Proor. From Theorem I we know that h.(y | di) is unimodal in y where
h(ylde) = ge(y | d)ly — de — M(Ch, )]

Hence Ea{h(y | d)l = [2= h(y | dv) dF(dy) is also unimodal in y. Therefore b:*,
the optimal bid price, is obtained by setting its derivative equal to zero.
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a%, [Ba, {he (5| di}] = 0.
(%; f_: gi(be | de)lbr — di — MA(Cl, $2)1AF (di)
= ./: {ge(be | di)[be — de — M(C, 6e)] + ge(bi | di)} dF (de)

= GhBbe — W(C 81 = [ Gil0 | A Q) + 1 C0e)

Setting this equal to 0 yields the desired result. Q.E.D.

Again our optimal bid price is of the form of that of §2. Another technique
for handling constraints involving random variables is linear programming under
uncertainty® in which one defines a penalty function for violations of the resource
constraint and then minimizes the expected value of same. For example, we would
define &; = ¢; — X jes, aij, & random variable with c.d.f. G(t). Let 6:(t;) = cost of
procuring additional quantities of 7, such that 6;(¢;) = 0 if ¢; £ 0. Upon defining

Yat1 (Cotty $nta) = — ({2ser J 6:(6:)dG(8)])
we can describe the bidding process by the set of functional equations:
Ve (Chy 1) = Mazs, [ {gu(beldi)[be — di + Ye1(Ch — ax, e + o)1 +
(1 — ge(balde) Wari(Cy, ) }dF(d;)]-

As before, we have assumed that the a;; ~ N(g:;, o%;) are independent in order to
simplify our state defining variables.

It is important to note that ¥,(-, -) is unconstrained here. Our chance constrained
formulation could have been similarly defined with

Yn41(Crg1, dup1) = 0, if Pr( ZjEJ,. a;Se) 2 Vi€
= —oo, otherwise.

6. Delayed Disclosure of Contract Awardee Related to Level (v)
(See Stark-Mayer {24].)

In earlier sections we have assumed that a contract award is announced immediately
following the submission of bids and preceding the bid price deadline for the next
contract. Thus one knows with certainty the outcome of the bid for contract j before
being required to submit bid price bjy:.

In many instances this is not the case; one must confront the inability to deseribe
with certainty the amount of resources that must be committed to fulfill contracts
possibly won at any moment during the bidding period. Here again the constructs of
chance-constrained programming may be employed to bring the resource capacity
constraints into play.

For example, consider the nth contract bid in the l-period lag time case. With
zero lag time this problem appears as:

¥a(Cn) = maxs, gn(ba)[bn — da), if Cpn —an 20,
=0, otherwise

¢ Introduced by Dantzig {7].
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For the l-peroid lag time problem we must re-cast our functional equation re-
strictions snce-C, is a random variable assuming the value ¢, with probability
(1 = gu-1(baa)) and ca — Goa

with probability g,-1(bs—1). Thus we replace the restriction C, — a, = 0 with the
chance constraint Pr{Cn41 = 0} = a, for example, where the ranflom variable Cr;
is defined by:

Sample value of Cus1 Pr{Coy1 = catal
Cn 1 — gaa(baa) )1 — ga(ba)),
Cn — Gp1 gn-1(ba-1)[1 — ga(ba)],
Cn — Gn 1 — gn-1(ba1)1ga(bn),
Cn — Gny — G In1(ba-1) ga(bn).

Hence, if D,41 = {sample values of Cp;1 = 0}, we require that Pr{D,4} = « and
can define our functional equation here as:

Vi(Cr, be-1) = maxy, {ge(b) (b — di) + ga-1(be-1)¥a41(Ce — i, ba)
+ 11 =~ gea(be-) Wen(Ce, b)), if PriDen} 2 @
= 0 + graa(be-1)¥e1(Cr — as-1, Bs)
4+ [ — gea(be1) We42(Ce, Bi), otherwise
fork =1, ---, n where $us(-, -) = 0.

It is easy to check the condition Pr{D;,1} 2 a since Pr{D:;i} is a nondecreasing func.
tion of b4a. However, if the time lag was for I periods, I > 1, then y¥4(-) would
require [ — 1 more state parameters.

Appendix 2
THEOREM. Assume in the linear programming model [I] of §3.3 that there is at least one
profilable part, p; — d; > 0, which can be produced on machine 1, and at least one profit-
able part which can be produced on machine 2.° Then (1] has a basic optimal solution with
at least N — 2 of the z; variables 0 or k; . (See [10], [13], [15], [21] for similar Theorems
which stem from Manne’s original dominance type theorems, {15).)

Proor. Since for each j, 0 < z; < k;, it follows that an optimal solution to {] exists.
Constraints (1)-(5) are N 4+ 4 in number and therefore at most N -+ 4 variables
need be in an optimal basic solution. Because of the assumption, both S, and S; must
be in the basis.

Now constraints (5) ean be written r; + y; = k;, where y; = 0 is a slack variable.
Therefore since k; > 0, it follows that either z; or y; are in an optimal solution for
all j. Let p = number of z; variables for which z; = 0 or k;. Then for N — p vari-
ables both z; > 0 and y; > 0 occur, i.e., both are in the basis. Therefore the total
number of variables that are in the basic optimal solution is

2+p+2(N —p),

$ This assumption can be removed if we replace the right-hand sides of (3) and (4) in [I] by
small negative numbers, say —0.0001.
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and this number must be less than or equal to N + 4, i.e.,

2+p+2(N—p) =N +4

which implics

N-2sp QED.

Note that the device of replacing 0 with, say, —0.0001, in both (3) and (4) will
insure that both S; and S. are in any basic optimal solution.

19,
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